
2MA: Verifying Voice Commands via
Two Microphone Authentication

Logan Blue
University of Florida
Gainesville, Florida

bluel@ufl.edu

Hadi Abdullah
University of Florida
Gainesville, Florida
hadi10102@ufl.edu

Luis Vargas
University of Florida
Gainesville, Florida
lfvargas14@ufl.edu

Patrick Traynor
University of Florida
Gainesville, Florida
traynor@ufl.edu

ABSTRACT
Voice controlled interfaces have vastly improved the usability of
many devices (e.g., headless IoT systems). Unfortunately, the lack
of authentication for these interfaces has also introduced command
injection vulnerabilities - whether via compromised IoT devices,
television ads or simply malicious nearby neighbors, causing such
devices to perform unauthenticated sensitive commands is rela-
tively easy. We address these weaknesses with Two Microphone
Authentication (2MA), which takes advantage of the presence of
multiple ambient and personal devices operating in the same area.
We develop an embodiment of 2MA that combines approximate
localization through Direction of Arrival (DOA) techniques with
Robust Audio Hashes (RSHs). Our results show that our 2MA sys-
tem can localize a source to within a narrow physical cone (< 30◦)
with zero false positives, eliminate replay attacks and prevent the
injection of inaudible/hidden commands. As such, we dramatically
increase the difficulty for an adversary to carry out such attacks
and demonstrate that 2MA is an effective means of authenticating
and localizing voice commands.

CCS CONCEPTS
• Security and privacy→Multi-factor authentication; Access
control;

KEYWORDS
Internet of Things, authentication

ACM Reference Format:
Logan Blue, Hadi Abdullah, Luis Vargas, and Patrick Traynor. 2018. 2MA:
Verifying Voice Commands via Two Microphone Authentication. In ASIA
CCS ’18: 2018 ACM Asia Conference on Computer and Communications Secu-
rity, June 4–8, 2018, Incheon, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3196494.3196545

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196545

1 INTRODUCTION
One of the many promises of the Internet of Things (IoT) is conve-
nience. From devices that automatically close curtains at sundown
to connected door locks, IoT sensors, actuators and systems are
expected to be deployed in virtually every environment in the com-
ing decade. Because such devices often have extremely limited or
simply lack traditional user interfaces, an increasing number are
opting to integrate voice commands as their primary user interface.
Voice interfaces are also widely lauded as a means of making com-
puting inclusive by allowing young, those with disabilities, and the
elderly alike to successfully interact with enabled systems [35].

Unfortunately, voice interfaces suffer from a number of security
problems. First, most systems rely on ensuring that adversaries can
not be within physical proximity of devices implementing such
interfaces. Such devices need not be compromised by an attacker;
recent news provides examples of nearby televisions and radios
used to activate home assistant devices [3, 9]. This assumption
renders systems vulnerable to any malicious neighbor (e.g., closely
situated people in adjacent apartments, compromised IoT stereo,
television playing commercials) and is unrealistic given the number
of vulnerable IoT devices expected to be deployed in homes and
business in the coming years. Second, multiple researchers have
recently demonstrated that adversaries can inject commands with-
out nearby users hearing them [20, 44, 45], thereby circumventing
their ability to cancel such requests. Finally, even those systems
that attempt to use biometrics do little to prevent replay attacks.
Given the ease with which previously played audio can be sub-
tly modified [36, 41], adversaries can easily generate previously
unplayed commands in the absence of the user. Given that voice
commands can cause the execution of sensitive operations (e.g.,
the purchase of goods; the actuation of physical systems including
heating/air conditioning, door locks and window shades; perform
online banking), these systems require stronger protections.

In this paper, we present TwoMicrophone Authentication (2MA).
2MA systems take advantage of the fact that multiple (at least two)
microphones are likely to be present in settings where users deploy
systems with voice interfaces. We aim to retain the utility of such
systems while explicitly eliminating attacks from nearby sources,
replayed legitimate requests, and hidden commands. We make the
following specific contributions to achieve these goals:

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

89

https://doi.org/10.1145/3196494.3196545
https://doi.org/10.1145/3196494.3196545

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Logan Blue, Hadi Abdullah, Luis Vargas, and Patrick Traynor

• Develop TwoMicrophoneAuthentication:Applications
ranging from reducing ambient noise to identifying the tra-
jectory of bullets use unified arrays of microphones. To our
knowledge, ours is the first work to propose the use of mul-
tiple microphones located on potentially mutually disinter-
ested devices throughout an area (e.g., an apartment) to pro-
vide a stronger means of authenticating voice commands.
• Design and Implement First Instance of 2MA: 2MA sys-
tems can takemany forms.We design a two-channel protocol
(audio and network) and then implement a system using mi-
crophones located on an Amazon Echo/Google Home-like
device and a mobile phone held by an authorized user. We
demonstrate the ability to eliminate voice commands made
when the user is not present and those injected from places
outside of a narrow audio cone (< 30◦) with zero false posi-
tives.
• Defend Against Inaudible Attacks: We customize mech-
anisms including the Robust Sound Hash (RSH) and perform
extensive tests to ensure that the recent collection of inaudi-
ble attacks [20, 44, 45]1 fail to inject sensitive commands
without detection.

We spend significant time talking about our specific embodiment
of a 2MA system; however, readers should see the idea of 2MA as a
generic framework and by itself a contribution. It is our hope that
readers build applications appropriate for other specific contexts
(as we have done) in the future.

The remainder of the paper is organized as follows: Section 2
discusses related work; Section 3 provides background information
on our underlying mechanisms; Section 4 specifies our security
model and adversarial capabilities; Section 5 defines our 2MA pro-
tocol; Section 6 details the architecture of our system; Section 7
shows our experimental performance of our 2MA system, including
against adversarial audio; Section 8 offers discussion on a number
of important considerations; and Section 9 provides concluding
remarks.

2 RELATEDWORK
In recent years, speech has become a common command interface
for many devices [6, 7, 10–12]. While convenient, this interface
does not provide any means of authenticating an arbitrary speaker.
This allows anyone within the device’s audible proximity to issue
commands. In April of 2017, this lack of authentication allowed
Burger King to release a television advertisement that triggered
nearby Google assistant enabled devices to read a promotional
message posted online [9]. Similarly, a TV host in the UK caused
Amazon Echo devices to purchase a children’s dollhouse simply by
reading text on the news [3]. The effects of these specific instances
were eventually reversed, but only after millions of devices initi-
ated sensitive operations. Using a similar attack, a malicious entity
can unlock doors [8], make purchases [6, 13], or transfer money
thousands of times before being stopped [15, 25]. This problem is
compounded by the increasing number of IoT devices. A comprised
device with a built-in speaker can be used by an adversary to play
1We thank the authors of these three papers for generously providing us with malicious
samples against which we test our system. Their willingness to share these files not
only makes our results valid, but also allowed us to independently validate their results
(thereby furthering their science).

malicious audio commands. This is a realistic scenario given the
recent discovery of the Mirai Botnet [32], which comprised mil-
lions of IoT devices. Audio commands can also be concealed so that
they are imperceptible even if the victim is in the vicinity. These
morphing techniques exploit weaknesses in speech recognition
models employed by voice operated devices. The audio commands
can be modified to sound like nonsensical audio [20, 44] or can be
made completely inaudible [45] to the unsuspecting victim, while
simultaneously being registered as legitimate commands by the
voice operated device.

Many researchers have looked to incorporate speaker recogni-
tion into voice operated devices. This approach might ensure that
such devices only accept commands from the their real owners.
However, this approach has several limitations. First, the entropy in
the human voice prevents speaker recognition systems from being
used for large scale identification [17]. Second, researchers have
shown it is possible to synthesize audio to effectively imitate the vic-
tim’s voice, thereby defeating speaker recognition models [36, 41].
Tools making such attacks possible are widely available [5, 14].

The research community has spent significant effort in devel-
oping proximity based authentication systems. One of the best
known, Zero-Interaction Authentication (ZIA), involves the use of
an authentication token on a device (e.g., smart watch or phone)
in the user’s possession. The device monitors the user’s proxim-
ity [21] or activity [33] and then performs a wireless handshake
(e.g., via Bluetooth, WiFi) with the terminal device (e.g., a laptop)
using the token. Once the handshake is successfully completed,
the user is granted access to the terminal device. This approach
has some limitations, most important of which are replay [27] and
relay attacks [23, 26, 31, 43]. Similarly, zero-effort Two-factor au-
thentication can leverage surrounding audio to establish proximity
between the terminal and the user’s mobile device [30], although
some argue that this approach may be susceptible to adversarially
injected noise [42]. However, none of these techniques tightly lo-
calize a device user located arbitrarily within the same room as the
verifying device.

The use of the audio channel to perform these commands makes
the weaknesses described above more acute. As such, none of the
above solutions are appropriate to address the challenge identified
in this paper. Our goal in developing an embodiment of a 2MA
system is to overcome the limitations of these proposed systems in
an ecosystem in which voice commands are increasingly common.

3 BACKGROUND
3.1 Direction of Arrival
Direction of Arrival (DOA) is a technique used to determine the
direction a source (S) is located with respect to an array consisting
of at least 2 receivers, R1 and R2. DOA assumes S, R1, and R2 are
points on a 2D plane. The plane is defined such that R1 and R2 both
lie on the x-axis, with R1 at the origin. S transmits a signal (e.g.,
sound) which is subsequently registered by R1 and R2 at slightly
different times. R1 and R2 are assumed to share a global time frame
since they are apart of the same receiver array and both record the
time when the signal arrived at them. The difference between when
the signal arrives at both devices is used to compute the angle of
incidence as follows:

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

90

2MA: Verifying Voice Commands via
Two Microphone Authentication ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

S

R1 R2

✓

Receiver Array

L1

Figure 1: Direction of Arrival helps determine the direction
of a sound source S relative to two receivers (R1 and R2).

θ = cos−1 (vsτ
d

) (1)

where vs is the speed of sound, d is the distance between R1
and R2, and τ is the difference between the arrival times. Figure 1
provides a visual description of this technique and shows both the
angle θ and its corresponding line L1.

A single microphone array provides a direction of the source
(with bounded uncertainty). However, the presence of a second
microphone (or set of microphones) can assist in identifying the
location of a source along (or nearby) L1. Another 2MA system
provides this second estimation. Unlike before, these microphones
are not located on the same physical array, so achieving clock
synchronization is necessary.

3.2 Clock Synchronization
Clock synchronization is the process wherebymultiple independent
clocks are made to adhere to a single time domain. Even if the clocks
are initially set to the same time, their time values will gradually
drift apart; a phenomenon known as clock skew. A large amount of
research has been conducted in this area, especially with relation to
distributed systems [22, 24]. The Network Time Protocol (NTP) has
been shown to be accurate to tens of microseconds [4], more than
sufficient for our system. NTP works on a client server architecture,
where the client device sends a message contain the device’s time
when the first message is sent (Ta). The server records the “true”
time (Tx) of when the first message is received and then it sends
its response message. The response message contains Ta , Tx , and
the “true” time when the server’s response is sent, Ty . Finally, the
client records their local time when the last message was received
(Tb). Using the four recorded times, the client can now estimate the
one way network latency (TN) and the “true” (TT) time using the
following equations.

TN =
Tb −Ta − (Ty −Tx)

2 (2)

Figure 2: Robust Sound Hash steps: 1) The audio is split into
intervals. 2) The interval and a random number are passed
into a digest function. 3) The digest function generates a 512-
bit audio digest.

(a) Same content, different speakers (BER: 0.299)

(b) Different content, same speaker (BER: 0.499)

Figure 3: RSH helps identify similar content in two audio
streams, independent of the speaker. Cryptographic hashes
can not perform this task because noise, timbre, and differ-
ences in microphones produce varying analog streams. Fig-
ure 3a showswaveforms for two different speakers from the
TIMIT corpus saying the same content with a BER of 0.299.
Figure 3b shows the same speaker saying two different sen-
tences with a significantly higher average BER (0.499).

TT = Ty +TN (3)

3.3 Robust Sound Hash
Once an audio command is given, 2MA needs a mechanism to de-
termine if the commands heard on the mobile device and the voice
operated device are the same. Intuitively, we could use a crypto-
graphic hash function, compute the hash of each audio sample and
then compare to see if there is a collision. However, cryptographic
hash function are sensitive to minor variance in the input. In the

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

91

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Logan Blue, Hadi Abdullah, Luis Vargas, and Patrick Traynor

Figure 4: Any audio source in a room can broadcast malicious commands to the victim’s home assistant. 2MA is designed
to detect such commands by locating its source and only accepting the command if the source is closer to the user’s mobile
device.

case of audio, small changes (e.g., background noise) would com-
pute two vastly different hash values for two audio samples even
if they heard the same command. To determine if both recorded
commands are the same, we use Robust Sound Hash (RSH): a digest
function that is capable of summarizing the content of an audio
signal [29]. Unlike cryptographic hashes that change drastically in
response to minor variance in the input, RSH is designed to change
slightly as noise is added. In other words, RSHwill produce a similar
speech digest2 value for a signal even if the signal has been altered
by background noises. This allows RSH to capture unique features of
the input; in our case, semantics of a sentence or the words spoken.
We use the Jiao et al. RSH construction [29] for our system, which
is described at a high level in Figure 2. To make an RSH hash, an
audio sample is first divided into one second intervals. These audio
intervals are then passed to a function (alongside a secret key) to
output a probabilistic 512-bit digest for each second in the input.
The whole speech digest would be the concatenation of all the one
second digests in the audio sample. To compare two different audio
samples, the hamming distance between the two speech digests
needs to be computed. This hamming distance would establish the
bit error rate (BER) between both samples. A lower BER rate would
mean that the two audio samples are similar to each other while
a higher BER would mean the inverse. In Figure 3, we show that
speech digests are robust in regards to two speakers speaking the
same sentence. However, if the same speaker speaks different sen-
tences, the speech digest error will be much higher. In our case, to

2To avoid confusion with cryptographic hashes, RSH will be called “speech digest” for
the rest of the paper.

determine the threshold of acceptable dissimilarity between two
audio sample, we will use the same parameters derived by Reaves
et al. [40] since they evaluated RSH in an adversarial setting.

We note that applying RSH in an adversarial environment is not a
simple matter. Accordingly, properly parameterizing this algorithm
to this specific context is a contribution of this work.

4 SECURITY MODEL
We now define our security model and adversarial abilities.
Assumptions: 2MA assumes that the user is in constant possession
of their mobile device. This allows us to identify the user by the po-
sition of their mobile device. 2MA also needs a confidential channel
during an initialization phase but does not assume a confidential
channel while commands are being heard by the voice operated
device. This simulates actual operating conditions (i.e., voice com-
mands to such devices are said in the clear). Lastly, we also assume
that the mobile device, voice controlled device, and cloud system
are not compromised. Any other device (e.g., IoT systems) may
be compromised. These assumption are similar to traditional 2FA
models.
Adversaries: The goal of the adversary is to inject a malicious com-
mand to the voice operated device owned by the user. The em-
bodiment of the adversary can vary from a friend or neighbor to
a compromised device capable of emiting audio or a TV [3, 9].
Commands injected by the adversary can exercise the full range
of commands available to authorized users, including but not lim-
ited to adding items to a shopping list, setting alarms, or make
unauthorized purchase using the user’s credentials that are stored

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

92

2MA: Verifying Voice Commands via
Two Microphone Authentication ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

Trunc(HMAC(K, RSHp||Tp))

RSHh||Th||M||HMAC(K, RSHh||Th||M)

RSHp||Tp||HMAC(K, RSHp||Tp)

Initialization (Key Establishment)

Mobile
Device

Voice
Operated

Device

1.

0.

2.

[“Nothing”/“Repeat Command”]

Network Channel

Audio Channel

One Time Process

Continuos Process

Audio Command

Figure 5: 2MA uses the audio and network channel to au-
thenticate commands.

in the voice controlled device [3]. Moreover, voice commands can
be both understandable to a nearby user or outside of the range
of normal human comprehension [20, 44, 45]. As an example, an
adversary outside the target environment may leverage the lack
of authentication to inject commands that physically gain access
to the home (e.g., unlock the front door). We show the possible
adversaries in a home environment in Figure 4.

The above scenario assumes that the voice controlled device is
in a location where the user has permanent control, such as a home.
However, the voice controlled device could also be located in a
contested spacewhere the user only has temporary ownership of the
device. Contested spaces include hotel rooms, rental cars, and public
spaces. An adversarywill have the same capabilities in both settings;
however, contested spaces add new challenges to voice controlled
devices. For example, a user may temporarily assume ownership
of a built-in voice control device while staying in a hotel room.
Here, the previous tenant of the room is considered an adversary
as he/she could have left a wireless speaker in order to inject future
malicious commands to the voice controlled device. Additionally,
at the time of departure from the hotel, the voice controlled device
is left unattended and may still contain user’s credentials. In this
case, the next tenant may inject malicious commands to the voice
controlled device using the credentials left behind by the user. The
problem in either case is that the user is only in possession of the
voice controlled device for a limited time. Because users will not
stay such environments for a long time, solutions such as biometrics
are not appropriate (and remain vulnerable to replay attacks).
Security Goals: Given the above assumptions and adversaries, the
goal of any 2MA system is to tie the source of a voice command to
the holder of a mobile device, thereby stopping the above adver-
saries from being able to inject malicious commands. Legitimate
commands should not be replayable, nor should hidden/inaudible
commands be accepted.

5 AUDIO AUTHENTICATION PROTOCOL
Figure 5 details our audio authentication protocol. While 2MA may
be more broadly embodied, this specific protocol is designed to be
used between a mobile device and a voice operated home assistant
(e.g., Amazon Echo/Google Home). The goal of the protocol is

to authenticate the command to the user and to determine if the
command recorded at the home assistant is similar to the command
heard on the mobile device. We make use of an audio channel and
a network channel to communicate between both devices.

Our protocol consist of two phases: During the first phase, the
mobile device and the home assistant perform a one-time initializa-
tion where they derive a shared secret K . There are multiple means
by which K can be derived; we point the reader to the literature on
authenticated key exchange for more information as this is not a
contribution of this work.

Phase Two occurs when the user speaks a command. At this
time (denoted by Step 1), both the mobile device and home assistant
locally compute a speech digest (RSHp and RSHh , respectively). The
mobile device then computes HMAC(K , RSHp | |Tp), where RSHp is
the speech digest at the mobile device, Tp is the time when the
mobile device first receives the audio command, andK is the shared
secret between the two devices. Note that both the mobile device
and home assistant have tightly synchronized clocks via that mech-
anisms discussed earlier in the paper. In compliance to NIST stan-
dards [37], the mobile device then truncates the HMAC to 32-bits
and uses this value to create a tone that will be sent to the home
assistant via the audio channel.3 This truncated value is necessary
because the audio channel has limited bandwidth for robust acous-
tic signaling [40]. In parallel, the mobile device also constructs a
string of form RSHp | |Tp | |HMAC(K , RSHp | |Tp) and sends it to the
home assistant via the network channel.

In Step 2, the home assistant first validates if the string received
from the mobile device is authentic by parsing out the values RSHp
andTp and recomputing the HMAC as above. Validating the HMAC
tells the home assistant that the string is authentic to the mobile
device of the user and that it was received at time Tp . However,
this does not tell the home assistant whether or not the command
heard at the mobile device is the same as the command heard
locally. Thus, to authenticate the command, the home assistant
passes the locally recorded audio and the speech digest RSHp from
the mobile device through an audio similarity filter (we give more
details on its construction in Section 6.2) that will determine if
both commands are similar. Once the filter outputs a result, the
home assistant will then send through the network a string of form
RSHh | |Th | |M | |HMAC(K , RSHh | |Th | |M) where RSHh is the speech di-
gest of the command heard at the mobile device, Th is the time
when the command was first recognized, and M indicates if the
commands were a match with each other. If so, the home assistant
will execute the actual command and output the results through
the audio channel. Otherwise, the home assistant will alert the user
of the failed command. Alerting the mobile device of this operation
allows it to log all commands executed by the home assistant under
its authorization.

6 SYSTEM ARCHITECTURE
We designed and constructed this emboddiment of a 2MA system
based on two main mechanisms; Command Location Bounding

3NIST 800-107, an HMAC of a strong algorithm can securely be truncated as needed
by applications. This standard specifically identifies truncation to as short as 32-bits
for audio applications because the real-time nature of audio makes it unlikely that
an adversary can successfully attack such a system. Accordingly, our approach is
compliant with best-practices.

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

93

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Logan Blue, Hadi Abdullah, Luis Vargas, and Patrick Traynor

Voice Operated Device
Audio

Similar?Speech Digest: Mobile
Device

Speech Digest:
Voice Operated Device

Speech to Text (STT)

Text to Speech (TTS)

Similar?

Speech Digest:
TTS

Speech Digest:
Voice Operated Device

Pass/Fail

Resample and remove silence

Figure 6: Our command filter first ensures that the audio heard in the mobile device is similar to that of the voice operated
device. Then, to stop hidden commands, the filter generates a new audio from the extracted command heard at the voice
operated device and compares this audio to the original for similarity.

and Audio Similarity Filtering. Command Location Bounding is
used to define an area from which non-malicious commands should
originate from. Audio Similarity Filtering ensures that the audio
detected at both the mobile device and the home assistant share
similar characteristic to avoid inaudible/malicious command injec-
tion. Through the protocl described in the previous section and its
instantiation as a system in this section, we achieve the security
goals established in Section 4.

6.1 Command Location Bounding
Home assistants execute all commands that they hear. By accepting
all commands, home assistants rely solely on their physical security
to prevent malicious command injection. Since not all potential
deployment locations for home assistants are physically secure,
we need a more robust security measure. This technique attests
to the authenticity of a command by colocating the source of the
audio and the user’s mobile device. By forcing this constraint onto
a command, we limit the physical area from which an attack could
originate.

We calculate the DOA of the audio command as our location
metric. Although DOA is not able to derive the exact location of
either the mobile device or the command’s origin, DOA can be used
to derive the direction from and bounds for the origin of a sound.
By using directionality, we can remove the majority of the physi-
cal locations in a region. While highly precise distance bounding
protocols would provide greater localization [18, 19, 28, 38, 39], the
specialized radios necessary to implement such protocols are not
available on any mass-marketed smartphone or home assistant. In-
stead, we select components that are already widely deployed on all
systems and could be activated via software update. The inclusion
of such radios could be used as part of another embodiment of a
2MA system, and we leave that exercise to future work.

We construct the chirp emitted by the mobile device as described
in Step 1 of our protocol from Section 4. The chirp is generated in
the 20 KHz range to make it inaudible to human hearing (thereby
minimizing any negative impact on user experience). We use this
chirp to calculate DOAP (DOA of the mobile device), and then add
the system tolerance for deviation from that direction. If DOAV
(DOA of the voice) falls within that tolerance, it is passed on to the
next phase of processing.

We note that an adversary operating in the absence of a user
would not be able to execute an attack. Specifically, if the user’s
mobile device is not in the room, the command will be rejected
because no chrip (yet alone a correct one) will be generated.

6.2 Audio Similarity Filter
Location bounding allows us to eliminate commands (audible to
the user or otherwise) that originate outside of the directional
cone. However, an adversary within the cone may still be able
to inject commands. All systems allow a present user to verbally
cancel commands they can hear; accordingly, we need to ensure
that inaudible commands [20, 44, 45] originating within the cone
can not activate the home assistant.

The first goal of our filter is to ensure that the same command is
heard at both the mobile device and the home assistant.Without such
a protection, an adversary may attempt a relay attack or to inject
garbled (but audible) audio [44]. Figure 6 shows the construction of
our audio similarity filter. As inputs, we get the audio recorded at
the home assistant and the speech digest RSHp that was extracted
from the string sent by the mobile device. The home assistant then
computes the speech digest RSHh of the locally stored audio and
the hamming distance between RSHp and RSHh . We use a simple
majority rule to determine if RSHp and RSHh are similar to each other.
We set our BER threshold for this comparison at 0.384, which was

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

94

2MA: Verifying Voice Commands via
Two Microphone Authentication ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

previously derived by Reaves et al., [40]; however, we independently
validated this setting.

However, the home assistant is still vulnerable to hidden com-
mands, or commands that are unintelligible to human hearing but
still register as an actual command to the home assistant [20, 45].
To stop this, our system uses the audio recorded at the home assis-
tant and passes it through a speech to text (STT) module4. If the
module does not transcribe the audio sample, the input is rejected.
The home assistant then passes correctly transcribed commands
through a text to speech (TTS) module. We can then compare this
new audio sample to the original audio using RSH.

The new audio signal may not have the same characteristics
or duration as the original audio. This is a common occurrence
because the original audio may contain silence at the beginning
or end of the audio or during long pauses between words, as is
common in a normal conversation. Additionally, the original audio
may have been sampled at a different rate than the new audio. To
fix these problems, we first trim silence. We then resample the new
audio for the same duration as the original audio. We do this so that
words heard in each audio match as close a possible with each other
in regards to when the command was said. We then recompute the
RSH value of trimmed original audio and compute the RSH value of
the new audio.

Second, since we are actively changing the speaker of the new
audio by using the TTS module (i.e., the speaker is no longer the
user), comparing the newly generated digests would have a higher
probability of failing if we were to use the original BER threshold of
0.384. As such, we used the TIMIT corpus [2]5 to derive a new BER
that would be receptive to the subtle changes of speakers (i.e., the
user and a machine generated voice command). We used the corpus
to represent audio that would be recorded on the home assistant
and the text file in the corpus to derive new audio by passing it
through our TTS module. In total we used 2, 310 different audio
clips that contain 7, 453 seconds of sample date. We calculated an
average BER of 0.4105 with a median of 0.4238. From those, we used
0.4105 as our new BER for our second speech digest comparison in
our audio filter. These parameters allow us to accurately determine
if the audio heard matches the command that was derived.

Finally, with our new threshold rate of 0.4105, we now compare
the speech digests of the trimmed original file and the new audio
generated by the TTS module to determine if both are similar. In
the case of a benign command, the second comparison would pass.
However, in the case of a hidden command, the distorted audio
input would not.

7 EXPERIMENTS
We perform a number of experiments to characterize our system
and design choices. Our first three experiments find minimum au-
dio levels and test seemingly equivalent (but flawed) alternative
designs. We perform these tests using a Music Angel JH-MD5BT
Bluetooth speaker [1] and 2 Huawei Nexus 6Ps, 2 Google Pixels,
and 2 Samsung Galaxy S8s as our mobile devices. We then focus
on our proposed design and measure the accuracy of the DOA and
4We treat the speech to text module as a black box and make no assumption on the
underlying algorithms.
5The TIMIT Audio Corpus is viewed as the “gold standard” for audio testing and is
therefore the most appropriate audio for calibration and testing.

RSH. Through these experiments, we demonstrate that our pro-
posed approach dramatically increases the difficulty of launching
command injection attacks and is practical on currently deployed
hardware.

7.1 Volume and Phone Command Recognition
We tested the mobile device’s ability to detect audio commands at
various volumes. Our aim was to determine the minimum volume
at which a home assistant device is activated by a command. We
assume that the microphones in both mobile phones and home
assistants are similar; therefore, the results are applicable to both
kinds of devices.

This experiment was conducted in a quiet environment with a
background noise between 20dB-25dB. This level of background
noise is similar to that of a quiet home. We used the Music Angel
Speaker to play a single “OK Google”, command at various volumes.
Our two Nexus 6ps mobile devices were used as receivers during
this test. One mobile device was used to measure the volume at a
set distance from the speaker while the other device was used to
see if the Google Assistant could detect the command at the same
distance as the other mobile device.

Starting at the initial volume of 25dB, we incrementally increased
the volume of our speaker by 5dB, until we reach a volume of 45dB.
We found that the minimum volume that a home assistant could
reliability detect a command (100% detection rate) was 40dB. At
it quietest, the assistant could properly detect a command around
30dB (i.e., noise levels of a quiet conversation) with a reliability of
40%. Given that all these decibel levels are audible to the human
hearing, a user could stop any maliciously injected command if
they are near the home assistant. For 2MA systems, this implication
allows us to leverage the user as an additional security check against
maliciously injected commands targeted at the home assistant.

7.2 Localization Based on Audio Degradation
Our second and third experiments were designed to address a seem-
ingly simple solution - using audio degradation over distance. Be-
cause the intensity of audio decreases with distance, the volume
of an audio command should be greater at a closer point than fur-
ther away. This information can be used to determine the relative
location of the mobile device and home assistant. However, our
experiments demonstrate that such an approach is unreliable.

We performed the experiment in the same quiet environment
mentioned above. The speaker was placed at a fixed location while
mobile devices were placed at various distances from the speaker.
The speaker played a 400Hz tone at a constant volume for 10 sec-
onds. Bothmobile devices were placed between 1 and 20 feet (0.3-6.1
meters) from the speaker at 1 foot (0.3 meter) increments. Our ex-
perimental data is shown is Figure 7.

Figure 7 demonstrates that there is a weak relationship between
the distance and the volume (r2 = 0.513). However, even with a
constant audio source, the variation in the volume at any given
distance is too great to tightly bound distance to volume.We believe
that this variation can be attributed to hardware limitations and en-
vironmental effects such as reflection and constructive/destructive
interference. Without a tight relationship, volume based distance

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

95

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Logan Blue, Hadi Abdullah, Luis Vargas, and Patrick Traynor

Figure 7: Our experiments reveal that the relationship be-
tween the volume and the distance is not tight. For example,
when the difference in volume at two receivers is 10dB, the
difference in distance the sound has to travel between the
source and the two receiver can be from 43ft to 62ft. The
existence of this high variance disqualifies volume as an ef-
fective distance bounding metric.

bounding appears unfit for 2MA systems in general because it
cannot reliably determine which device is closer.

7.3 Frequency Ratios and Audio Attenuation
We also tested localization based on the frequency of an audio
command. Naturally, higher frequencies attenuate faster than lower
ones [34]. We used this observation to detect which of the two
devices is closer to the audio source.

The experiment setup is similar to that of Section 7.2, except for
the addition of two different types of mobile devices, the Google
Pixel and Samsung Galaxy S8. We use two phones of each type,
one phone acting as the home assistant and the other as the user’s
mobile device. During the experiment, we use all five different
combinations of the home assistants and phones by replacing the
phone types as needed.

Each test consisted of playing a piece of audio from the TIMIT
database [2] over the speaker at a fixed volume. The two mobile de-
vices were placed at unequal distances from the audio source. Each
device recorded the audio6 at their respective locations. We then
divided the audio sample into eight frequency bands (150Hz-500Hz,
500Hz-1kHz, 1kHz-1.5kHz, 1.5kHz-2kHz, 2kHz-2.5kHz, 2.5kHz-
3kHz, 3kHz-3.5kHz, 3.5kHz-4kHz) and found the peak volume
within each band.

Based on these peak volumes, we created an attenuation ratio
for every measured audio sample using:

ratio = peakhiдh/peaklow (4)
where peakhiдh is the peak volume from a higher frequency band
and peaklow is the peak volume from a lower frequency band. We
then compared these ratios to determine which device is closer to
6All recordings were done at 8kHz sampling rates.

Devices Correct Percentage
Hub Phone Home Hallway
Nexus Galaxy 89.49% 23.77%
Nexus Pixel 85.64% 21.38%
Nexus Nexus 87.18% 31.43%
Galaxy Galaxy 93.34% 65.18%
Pixel Pixel 68.46% 65.95%

Table 1: Using attenuation to distance bound two devices
works well in open environments, such as homes. However,
it does not work as well in high reverb environments like
hallways .

the source. A higher attenuation ratio means that a device is closer
to the audio source.

In Table 1, we show how often we were able to correctly predict
whether an audio source was closer to the home assistant or a mo-
bile device. In the case of our quiet room experiments, all of the
scenarios (except for the pixel/pixel) achieved a success rate of at
least 85%. However, in a reverberant environment, accuracy for all
scenarios dropped to between 21%-65%. We believe this is due to the
high amounts of reverberation within the space. Specifically, higher
frequencies reflect cleaner (with less loss) than lower frequencies.
It stands to reason that the reverberation in the environment is
artificially increasing the volume of the high frequencies signifi-
cantly more than the lower frequencies within the audio samples.
By unevenly amplifying the frequency domain, reverberation will
cause this type of distance bounding to fail.

We have shown that frequency based localization is not suitable
for authentication in our scenario. The frequency attenuation ratios
are not robust in environments with high reverberation and thus
unfit for a general 2MA system.

7.4 2MA Direction Bounding
We then tested the DOA techniques proposed for our embodiment
of a 2MA system. We use a Raspberry Pi B+ (2014) running Rasp-
bian Stretch as a stand in for a home assistant. We connected our
Raspberry Pi to a “Respeaker 4 Microphone Array” as our home
assistant device. The Respeaker array has 4 microphones spaced
5.9 cm apart in a square and is able to make 4 channel recordings
at sample rates up to 44100 Hz. It is important to note that the
Respeaker 4 Microphone Array is connected directly to the Rasp-
berry Pi via its 40 GPIO pin connection. We placed our Pi in a quiet
environment for testing.

The command data set consisted of 4 channel recordings that
were generated at a fixed distance and angle from the home assis-
tant. After recording the audio, we calculated the time thewaveform
reached each channel by locating the first point where the ampli-
tude of the waveform broke a given threshold. This was repeated
four times, once for each microphone. Then these times were used
to calculate the DOA for the command. The chirp data set was
generated using high frequency tones played from our Music Angel
speaker. For each data set we generated 20 samples at 6 different
locations around our microphone array. Specifically these points
are 0°, 10°, 20°, 30°, 90°, and 180° around the device from a set 0°
point.

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

96

2MA: Verifying Voice Commands via
Two Microphone Authentication ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

±15� Uncert.

FP: 0.0%

FN: 4.5%

±5� Uncert.

FP: 40%

FN: 3.8%
±10� Uncert.

FP: 8.8%

FN: 5.8%

Figure 8: While the false positive rate of our DOA system seems to vary with the uncertainty cone, the false negative rate
seems to remain consistent.

Next we cleaned our two data sets by examining the relative time
of arrival between each of the fourmicrophones located on the array.
That is, due to the physical properties of the device, the command’s
arrival at each microphone can differ from the other microphones
on the array by at most 11 samples. This number was determined
by calculating the distance an audio wave travels within 2.2 ∗ 10−5
seconds, or one sample at our 44100 Hz sampling rate. We then took
the maximum distance between any of the two microphones on
the array (5.9 cm for adjacent microphones, 8.3 cm for diagonally
microphones) and divided that by the distance traveled by the
wave during a single sample. Recordings beyond 11 samples apart
represented some other action (e.g., context switching) in the Pi
and were therefore discarded.

Using our cleaned data sets, we then constructed a comparison
to simulate a benign setting. In this comparison we derived how
precisely we can calculate the DOA using our current hardware and
signal processing. This consisted of matching runs originating from
the same location from both our command data set and our chirp
data set. Effectively this places a mobile device and the speaker
of the command at the same approximate location. We found an
average difference between our calculated DOA angles of 4.6° with
a standard deviation of 3.4°. From these values we estimate that
our uncertainty cone should be approximately ±15° degrees from
the chirp DOA to ensure a low false positive rate. In fact, within
our experimental set of 80 runs, 0 of them were misidentified as
malicious command with an uncertainty cone of ±15°. By tighten-
ing our uncertainty cone to ±5° and ±10° we found that our DOA
mechanism would have misidentified 32 and 7 pairs respectively.

We then constructed a comparison to mimic an adversarial set-
ting. Similar to before, we compared runs from our command data
set that originated from 0°. However, in contrast we compared it to
all other runs in the chirp data set that originated from a location
that was greater that our uncertainty away. After running all 440
adversarial comparisons, we found that at our preferred uncertainty
cone of ±15° had a false negative rate of 4.5%, misidentifying only
13 of our tests. Unlike in our benign testing, the uncertainty val-
ues of ±5° and ±10° degrees did not perform considerably worse.
Respectively, ±5° and ±10° achieve false negative rates of 3.9% and
5.8% only misidentifying 14 and 21 of our tests. Our adversarial test
data can be seen in the context of a typical room in Figure 8

It is important to assess false negatives in context. Were these
messages attempted with a user outside of the room, none would
be successful. If the user is in the room, they would need to verbally
cancel approximately 4 out of every 100 messages the attacker in-
jected (as opposed to all 100 without a 2MA system). Accordingly,
our proposed techniques dramatically increase the difficulty of suc-
cessfuly launching such an attack while minimizing burden on a user
to respond.

7.5 2MA Audio Similarity Filter
We tested the reliability of the filter against adversarial command
injections. We used Google’s Speech Recognition API as our speech
to text (STT) module and Google’s Text to Speech python library
as our text to speech (TTS) module.

One of the metrics we tested for was the reliability of our audio
similarity filter. In other words, we wanted to know the number of

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

97

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Logan Blue, Hadi Abdullah, Luis Vargas, and Patrick Traynor

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

Office Environment
BER Threshold

Figure 9: Most of the speech digest error can be attributed to
the first second of recording, which includes the activation
phrase “OK Google”.

times a benign command would successfully pass the audio similar-
ity filter. To determine this, we first performed a control experiment
to test the reliability of the TTS and STT modules of our similarity
filter in regards to the second speech digest comparison7. Using the
microphone built into a Macbook Air 2015, we recorded ourselves
speaking four different command (e.g.,“OK Google, call 911”, “OK
Google, set an alarm”, “OK Google, how’s the weather?”, and “OK
Google, transfer money”) 10 times each at the same tone and pace
as the output of our text to speech module. Our results showed that
39 out of 40 (97.5%) commands passed our audio similarity filter as
valid commands. We investigated why the last command did not
pass and concluded that there was audio clipping happening on
our recorded commands (i.e., the first part of “O” in “OK” was not
caught by the microphone).

Since our control test demonstrated reliability, we expanded our
experiment to include a real world office scenario with white noise
generators in the background. We recorded the same commands as
before but this time the commands were spoken at the same tone
and pace as a regular conversation. We set up two microphones
three meters apart and recorded the commands. In this case, each
microphone played the role of either the user’s mobile device or the
voice operated home assistant. We used two different configuration
for testing; audio originating at an equidistant location from both
microphones and audio originating closer to one microphone than
the other. In total, we obtained 80 different samples.

Of the 80 samples, all passed the first speech digest comparison,
were correctly transcribed by the STT module and then converted
to new audio samples by our TTS module. After removing silence
and resampling the audio as explained in Section 6.2, 62/80 (77.5%)
passed the final speech digest comparison. In Figure 9, we show the
BER rate of each second from the 80 audio samples we gathered.
A closer inspection showed that many of the seconds with a BER

7We are testing the second speech digest comparison because we are actively changing
the speaker for one of the audio samples.

greater than the threshold came from the first second in the audio
sample. We believe this drop in reliability can be accounted to the
late detection of activation phrase in the first second.

Adversarial Audio. An adversary can give the home assistant a
malicious command in three different ways: audible, inaudible and
hidden. Once a command reaches the audio similarity filter, our
2MA system has already indicated that the user and the source of
the command are co-located. In this case the adversary can only
broadcast the audio command from the same general direction
as the user, we expect that the user will over hear the malicious
command and take necessary action. However, that is not true in
the case of inaudible or hidden commands.

A hidden command is an audio command that has been obfus-
cated or “hidden” by noise [20]. This means that the user will not
detect the audio, but merely hear a sound. The authors of the attack
provide us with ten different hidden command audio samples. We
used these to test the audio similarity filter. Of the ten samples
provided, eight samples were not transcribed by the STT module8.
Therefore, the audio similarity filter automatically rejected these
command injections. One of the two adversarial audio clips that was
in fact transcribed by the STT module, the phrase “OK Google”, was
only an activation phrase and not an actual command. The other
command was partially transcribed from the original audio, which
was later rejected as an actual command by the second speech
digest comparison of our filter.

Finally, we also tested our audio similarity filter against inaudi-
ble commands [45]. An inaudible command is one that can not
be heard by the normal ear as it exists in the ultrasound range.
The authors provided us with four adversarial raw audio samples,
with commands encoded within frequencies of 24kHz and 32kHz.
These samples were passed through the audio similarity filter. In-
terestingly, the STT module did not transcribe any of the samples
and rejected all of them as actual commands. Although none of
the attack audios samples passed our audio similarity filter, we do
not claim our 2MA system to necessarily address these unknown
attacks.

8 DISCUSSION
8.1 Limitations
No system is perfect, especially those that operate in an analog
environment. Accordingly, our embodiment may fail to detect some
malicious commands under certain conditions. This includes an
adversary who is located within our system’s uncertainty cone. We
assume that in such a scenario, the owner will hear the malicious
audio commands and take the necessary action. Concretely, 2MA
treats the owner as an additional layer of security. Therefore, 2MA
will not be able to detect a malicious command if the adversary
generates it after first subduing the real owner or if the real owner
has difficulty hearing. We believe that our system could easily be
extended for the hearing impared to include confirmation displays
on the mobile device; however, we leave such extensions to future
work.

8We believe that Google’s Speech Recognition has improved since the publishing of
the attack paper

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

98

2MA: Verifying Voice Commands via
Two Microphone Authentication ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

8.2 Improving Accuracy
The ability to provide a tighter uncertainty cone would further re-
duce false negatives. Better hardware in the home assistant would
help make this possible. For instance, our Respeaker 4 Microphone
Array is representative of less provisioned home assistants. The
Google Home with only 2 microphones is the most similar to our de-
vice. However, better equipped home assistants such as the Amazon
Alexa and Apple Homepod with 7 and 6 microphones respectively
are also available. Having additional microphones would allow
us to further limit this cone-however, we believe that our results
represent the average hardware available on the market

8.3 Application Considerations
Sensitive Commands. 2MA systems authenticate any command

that is heard by the home assistant before it is executed. However,
not all commands made are sensitive or require an authentication
process. Commands such as “How’s the weather today?” or “What
time is it?” should be readily available to be queried by anyone
without having to go through the authentication steps set by 2MA.
However, banking transaction are more sensitive and would benefit
from the extra security. By setting an access control scheme or a user
defined blacklist and whitelist for commands, 2MA systems could
be deployed without removing the convenience of voice operated
devices.

Smart TV Authentication. Voice commands can be used to re-
motely control Smart TVs. Unfortunately, these commands can also
come from various, potentially malicious, sources. Although our
2MA embodiment focused on authenticating voice commands for
home assistants, we can further expand our command authentica-
tion to include smart TVs. By simply replacing the home assistant’s
microphones for the microphones found in the smart TV, a 2MA
embodiment could then colocote the user’s mobile device with the
voice command’s origin.

Purchase Authorization. The use of a voice interface for online
shopping is becoming increasingly popular. From Amazon [6] to
Apple [7] and, more recently, Google Home’s shopping integration
with Walmart [16]. While convenient, the voice interface’s lack of
command authorization enables an adversary to make purchases
without the consent of the owner. A possible solution to this lack
of authorization can be to deploy a 2MA system. For any command
to successfully be executed, 2MA would require the user’s mobile
device (and therefore, the user) to be in the same vicinity as the
voice interface. In this case, the colocation of the user and the
command would implicitly authorize any online purchase made.
However, if the user’s mobile device is not near the home assistant,
then the command would be treated as malicious and automatically
rejected.

8.4 Change of Ownership
IoT devices are becoming more prevalent in today’s world. For
example, hotel rooms are now equipped with devices (e.g., home
assistants, window blinds, thermostat) that allow occupants to seam-
lessly “connect” to the room by logging in to their personal cloud
profile. One problem that arises from the ubiquity of these devices is
the possible exposure of personal information when the ownership

is transferred from one user to the other (e.g., the next guest that
uses the same hotel room). From the perspective of the original
user, once they have checked out of the room, the IoT device can be
considered dead. Accordingly, the IoT device should remove all of
their credentials from the device. However, this may not the case.
Once a new guest checks-in to the room, they will have access to
these same device. If the devices never removed the previous user’s
credentials, the new user will have access to them. This exposure
could potentially allow the new user to make commands on behalf
of the previous one.

Similarly, built in IoT devices could change ownership in real
estate transactions. Much like hotel rooms, houses are either built
with IoT devices permanently fixed to the structure or the owner
has to augment their home throughout their stay. When the house
is eventually sold to a new owner, many of these devices will likely
change ownership as well. Unfortunately, these devices have no
way in verifying that the ownership of the home has changed. If
the original owner did not actively remove their credentials, then
the new tenant could give commands to the IoT devices with the
previously stored credentials.

In both scenarios described above, the underlying issue comes
from devices being unaware of the change of ownership. A possible
solution to this problem is to implement a 2MA system that gener-
ates mobile tokens to temporarily authenticate sensitive commands
for a set amount of time. For example, if a new tenant were to
make a sensitive command after the mobile token expires, then the
2MA system would prevent the command from being placed. Such
system would have a similar concept as continuous authentica-
tion [33, 43]. However, unlike continuous authentication, the goal
of this system would not be to completely stop the new tenant from
using these built-in devices. Rather, the goal is to prevent the new
tenant from making sensitive commands before setting up their
own home cloud environment. Developing and parameterizing a
system as described is an interesting area that we leave for future
work.

8.5 2MA Systems With Additional Hardware
Our 2MA embodiment was made to be easily deployable. We made
concessions to avoid adding extra hardware other than the user’s
mobile device and the home assistant itself. However, many IoT
device (e.g., smart security cameras, smart baby monitors, and blue-
tooth speakers) contain microphones that could be potentially used
as additional inputs. A 2MA system could leverage these additional
microphones with DOA, or alternative localization technique, to
find the exact location of a voice command. In a space containing
additional microphones, a 2MA system could construct separate
uncertainty cones that could then be used to pinpoint the internal
location of the voice command. Rather than only showing direc-
tionality of the command, we could determine a small region from
which the command originated. Having a tighter bound on the
location of the command would serve to increase the security of a
2MA system.

It is our hope that readers see 2MA as a generic framework, and
build applications appropriate for specific contexts (as we have
done) going forward.

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

99

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Logan Blue, Hadi Abdullah, Luis Vargas, and Patrick Traynor

9 CONCLUSION
Voice commands dramatically simplify many user interfaces, and
are critical to the operation of many IoT devices. Unfortunately,
such commands are only protected by the assumption that only
authorized users are capable of speaking to these devices. As has
repeatedly been demonstrated recently, this is no longer a realistic
assumption [3, 9]. In this work, we propose Two Microphone Au-
thentication (2MA). 2MA systems take advantage of the presence of
multiple microphones being present in an ecosystem to localize and
authenticate the source of a command. We demonstrate that such a
construction works using independent devices (e.g., a mobile phone
and a home assistant) in both benign and malicious settings, and in
so doing dramatically increase the effort required by an attacker
to inject such commands successfully. To this end, we show that
the increased deployment of microphones in many settings can be
used to improve authentication.

10 ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
under grant number CNS-1702879. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] [n. d.]. Music Angel JH-MD5BT Bluetooth Speaker. https://www.amazon.com/

imiss-music-angel-jhmd05bt-mini-bluetooth-wireless-portable-speaker/dp/
B00F86RRNY/?tag=napcardnao-20. ([n. d.]). 2017-12-18.

[2] [n. d.]. TIMIT: Acoustic-Phonetic Continuous Speech Corpus. https://
catalog.ldc.upenn.edu/ldc93s1. ([n. d.]). 2017-12-18.

[3] [n. d.]. TV anchor says live on-air ‘Alexa, order me a dollhouse’ âĂŞ guess what
happens next. ([n. d.]).

[4] 2010. Network Time Protocol Version 4: Protocol and Algorithms Specification.
https://tools.ietf .org/html/rfc5905. (2010).

[5] 2017. Adobe demos "photoshop for audio," lets you edit speech as easily
as text. https://arstechnica.com/information-technology/2016/11/adobe-voco-
photoshop-for-audio-speech-editing/. (2017).

[6] 2017. AmazonAlexa Line. https://www.amazon.com/Amazon-Echo-And-Alexa-
Devices/b?ie=UTF8&node=9818047011. (2017).

[7] 2017. Apple Siri. https://www.apple.com/ios/siri/. (2017).
[8] 2017. August Home Supports the Google Assistant. http://august.com/2017/03/

28/google-assistant/. (2017).
[9] 2017. Burger King ‘O.K. Google’ Ad Doesn’t Seem O.K. With Google.

https://www.nytimes.com/2017/04/12/business/burger-king-tv-ad-google-
home.html. (2017).

[10] 2017. Cortana. https://www.microsoft.com/en-us/windows/cortana. (2017).
[11] 2017. Google Assistant. https://assistant.google.com/. (2017).
[12] 2017. Google Home. https://madeby.google.com/home/. (2017).
[13] 2017. Google Home now lets you shop by voice just like Amazon’s

Alexa. https://techcrunch.com/2017/02/16/google-home-now-lets-you-shop-
by-voice-just-like-amazons-alexa/. (2017).

[14] 2017. LyreBird. https://github.com/logant/Lyrebird. (2017).
[15] 2017. Starling Bank Integrates API into Google Home. http://bankinnovation.net/

2017/02/starling-bank-integrates-api-into-google-home-video/. (2017).
[16] 2017. Walmart Makes Voice Shopping Even More Affordable with New Google

Device. https://blog.walmart.com/innovation/20171004/walmart-makes-voice-
shopping-even-more-affordable-with-new-google-device. (2017).

[17] Salil Prabhakar Antil K. Jain, Arun Ross. 2004. Information Fusion in Biometrics.
IEEE Transactions on Circuits and Systems for Video Technology (2004).

[18] C. Cremers, K.B. Rasmussen, and S. Capkun. 2012. Distance hijacking attacks on
distance bounding protocols. Proceedings of the IEEE Symposium on Research
in Security and Privacy.

[19] C. Meadows, P. Syverson, and L. Chang. 2013. Towards more efficient distance
bounding protocols for use in sensor networks. Proceedings of the Conference
on Security and Privacy for Emerging Areas in Communication Networks.

[20] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. 2016. Hidden Voice Commands.
In 25th USENIX Security Symposium.

[21] Mark D. Corner and Brain D. Noble. 2002. Zero-Interaction Authentication. In
Proceedings of the 8th Annual International Conference on Mobile Computing and
Networking (MobiCom ’02). ACM, New York, NY, USA, 11.

[22] Jeremy Elson, Lewis Girod, and Deborah Estrin. 2002. Fine-grained network time
synchronization using reference broadcasts. ACM SIGOPS Operating Systems
Review 36, SI (2002), 147–163.

[23] Aurélien Francillon, Boris Danev, and Srdjan Capkun. 2011. Relay Attacks on
Passive Keyless Entry and Start Systems in Modern Cars. In In Proceedings of the
18th Annual Network and Distributed System Security Symposium (NDSS).

[24] Sukumar Ghosh. 2014. Distributed systems: an algorithmic approach. CRC press.
[25] Google. 2017. Transactions Developer Preview. https://developers.google.com/

actions/transactions/. (2017).
[26] Tzipora Halevi, Di Ma, Nitesh Saxena, and Tuo Xiang. 2012. Secure Proximity De-

tection for NFC Devices Based on Ambient Sensor Data. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[27] Otto Huhta, Prakash Shrestha, Swapnil Udar, Mika Juuti, Nitesh Saxena, and N
Asokan. 2015. Pitfalls in Designing Zero-Effort Deauthentication: Opportunistic
Human Observation Attacks. arXiv preprint arXiv:1505.05779 (2015).

[28] J. Clulow, G.P. Hancke, M.G. Kuhn, and T. Moore. 2006. So near and yet so
far: Distance-bounding attacks in wireless networks. Proceedings of European
Conference on Security and Priacy in ad-hoc and sensor networks (ESAS).

[29] Yuhua Jiao, Liping Ji, and Xiamu Niu. 2009. Robust Speech Hashing for Content
Authentication. IEEE Signal Processing Letters (2009).

[30] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srfjan Capkun.
2015. Sound-Proof: Usable Two-Factor Authentication Based on Ambient Sound.
Proceedings of the 24th USENIX Security Symposium.

[31] Z. Kfir and A. Wool. 2005. Picking Virtual Pockets using Relay Attacks on
Contactless Smartcard. In First International Conference on Security and Privacy
for Emerging Areas in Communications Networks (SECURECOMM’05).

[32] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
2017. DDoS in the IoT: Mirai and other botnets. IEEE Computer Society (2017).

[33] Shrirang Mare, Andrés Molina Markham, Cory Cornelius, Ronald Peterson, and
David Kotz. 2014. Zebra: Zero-effort Bilateral Recurring Authentication. In IEEE
Symposium on Security and Privacy (S&P).

[34] Peter RMarler and Hans Slabbekoorn. 2004. Nature’s music: the science of birdsong.
Academic Press.

[35] Chase Martin. 2017. 72% Want Voice Control In Smart-Home Products. Media
Post – https://www.mediapost.com/publications/article/292253/72-want-voice-
control-in-smart-home-products.html?edition=99353. (2017).

[36] Dibya Mukhopadhyay, Maliheh Shirvanian, and Nitesh Saxena. 2015. All Your
Voices are Belong to Us: Stealing Voices to Fool Humans and Machines. 20th
European Symposium on Research in Computer Security.

[37] National Institute of Standards and Technology. 2012. Recommendation for
Applications Using Approved Hash Algorithms. NIST Special Publication 800-
107 - Revision 1. (2012).

[38] N.O. Tippenhauer, C. Popper, K.B. Rasmussen, and S. Capkun. 2011. On the
requirements for successful gps spoofing attacks. Proceedings of the ACMCon-
frence on Computer and Communication Security (CCS).

[39] N.O. Tippenhauer, H. Luecken, M. Kuhn, and S. Capkun. 2015. UWB Rapid-Bit-
Exchange system for distance bounding. Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks.

[40] Bradley Reaves, Logan Blue, Hadi Abdullah, Luis Vargas, Patrick Traynor, and
Thomas Shrimpton. 2017. AuthentiCall: Efficient Identity and Content Authen-
tication for Phone Calls. In 26th USENIX Security Symposium (USENIX Security
17).

[41] Maliheh Shirvanian and Nitesh Saxena. 2014. Wiretapping via Mimicry: Short
Voice Imitation Man-in-the-Middle attacks on Crypto Phones. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.

[42] Babins Shrestha, Maliheh Shirvanian, Prakash Shrestha, and Nitesh Saxena. 2016.
The Sounds of the Phones: Dangers of Zero-Effort Second Factor Login based on
Ambient Audio. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security.

[43] Hien Thi Thu Truong, Xiang Gao, Babins Shrestha, Nitesh Saxena, N Asokan,
and Petteri Nurmi. 2014. Comparing and fusing different sensor modalities for
relay attack resistance in zero-interaction authentication. In the Proceedings of
2014 IEEE International Conference on Pervasive Computing and Communications
(PerCom). 163–171.

[44] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. 2015. Cocaine
Noodles: Exploiting the Gap Between Human and Machine Speech Recognition.
11th USENIX Workshop on Offensive Technologies (2015).

[45] Guoming Zhang, Chen Yan, Xiaoyu Ji, Taimin Zhang, Tianchen Zhang, and
Wenyuan Xu. 2017. DolphinAttack: Inaudible Voice Commands. Computer and
Communications Security (CCS) (2017).

Session 3: Authentication ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

100

https://www.amazon.com/imiss-music-angel-jhmd05bt-mini-bluetooth-wireless-portable-speaker/dp/B00F86RRNY/?tag=napcardnao-20
https://www.amazon.com/imiss-music-angel-jhmd05bt-mini-bluetooth-wireless-portable-speaker/dp/B00F86RRNY/?tag=napcardnao-20
https://www.amazon.com/imiss-music-angel-jhmd05bt-mini-bluetooth-wireless-portable-speaker/dp/B00F86RRNY/?tag=napcardnao-20
https://catalog.ldc.upenn.edu/ldc93s1
https://catalog.ldc.upenn.edu/ldc93s1
https://tools.ietf.org/html/rfc5905
https://arstechnica.com/information-technology/2016/11/adobe-voco-photoshop-for-audio-speech-editing/
https://arstechnica.com/information-technology/2016/11/adobe-voco-photoshop-for-audio-speech-editing/
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
https://www.amazon.com/Amazon-Echo-And-Alexa-Devices/b?ie=UTF8&node=9818047011
https://www.apple.com/ios/siri/
http://august.com/2017/03/28/google-assistant/
http://august.com/2017/03/28/google-assistant/
https://www.nytimes.com/2017/04/12/business/burger-king-tv-ad-google-home.html
https://www.nytimes.com/2017/04/12/business/burger-king-tv-ad-google-home.html
https://www.microsoft.com/en-us/windows/cortana
https://assistant.google.com/
https://madeby.google.com/home/
https://techcrunch.com/2017/02/16/google-home-now-lets-you-shop-by-voice-just-like-amazons-alexa/
https://techcrunch.com/2017/02/16/google-home-now-lets-you-shop-by-voice-just-like-amazons-alexa/
https://github.com/logant/Lyrebird
http://bankinnovation.net/2017/02/starling-bank-integrates-api-into-google-home-video/
http://bankinnovation.net/2017/02/starling-bank-integrates-api-into-google-home-video/
https://blog.walmart.com/innovation/20171004/walmart-makes-voice-shopping-even-more-affordable-with-new-google-device
https://blog.walmart.com/innovation/20171004/walmart-makes-voice-shopping-even-more-affordable-with-new-google-device
https://developers.google.com/actions/transactions/
https://developers.google.com/actions/transactions/
https://www.mediapost.com/publications/article/292253/72-want-voice-control-in-smart-home-products.html?edition=99353
https://www.mediapost.com/publications/article/292253/72-want-voice-control-in-smart-home-products.html?edition=99353

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Direction of Arrival
	3.2 Clock Synchronization
	3.3 Robust Sound Hash

	4 Security Model
	5 Audio Authentication protocol
	6 System Architecture
	6.1 Command Location Bounding
	6.2 Audio Similarity Filter

	7 Experiments
	7.1 Volume and Phone Command Recognition
	7.2 Localization Based on Audio Degradation
	7.3 Frequency Ratios and Audio Attenuation
	7.4 2MA Direction Bounding
	7.5 2MA Audio Similarity Filter

	8 Discussion
	8.1 Limitations
	8.2 Improving Accuracy
	8.3 Application Considerations
	8.4 Change of Ownership
	8.5 2MA Systems With Additional Hardware

	9 Conclusion
	10 Acknowledgments
	References

